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Sum Rules for the One-Component Plasma 
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It is proved that, in the one-component plasma, with interactions including a 
non-Coulombic short-range part, the density derivative of the correlation func- 
tions p,(rl ..... r~) can be simply expressed as an integral of Pn+l(rl ..... rn_l). 
This result is applied to prove the relation between the fourth moment of P2 and 
the compressibility. 

KEY WORDS:  One-component plasma; BBGKY hierarchy; sum rules; 
screening. 

1. I N T R O D U C T I O N  

In the study of classical Cou lomb  systems, the use of the B B G K Y  
hierarchy, with some addit ional assumpt ion of  clustering properties for the 
density correlat ion functions, turned out to be very fruitful. In this way, the 
r igorous proofs of the perfect screening conditions and of  the Stillinger- 
Lovet t  sum rules have been established for charged particles with interac- 
tions including a short-range part. ~1 4) Another  sum rule links the fourth 
momen t  of the two-point  correlat ion function to the compressibility. This 
rule can be easily obtained on the basis of appealing but not  r igorous 
arguments.  15'6) By using the B B G K Y  hierarchy (with clustering assump- 
tions), this rule has been proved ~7 9~ for particles interacting via purely 
Coulombic  forces. It is therefore interesting to look at the case where a 
short-range potential  is added to the Coulombic  one. 

So we are dealing with ions of one species, interacting via Coulombic  
forces and some short-range forces, imbedded in a uniform background  
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which ensures the electrical neutrality. The statistics is that of the canonical 
ensemble, and the dimension of space is 2 or 3. The system and the various 
assumptions concerning the correlation function are introduced in Sec- 
tion 2. Then, in Section 3, we establish a new and simple equation which 
expresses the volume derivative of the n-point correlation function with the 
help of correlation functions of order ~<n + 1, 2 without first taking the 
thermodynamic limit. The problems concerning this are discussed before 
applying the result to the proof of the aforementioned sum rule relative to 
the fourth moment of the two-point correlation function (Section 4). Some 
technical calculations are given in Appendix A. The perfect screening 
conditions needed in Sections 3 and 4 are recalled in Appendix B. 

2. GENERAL F R A M E W O R K  

We consider a set of N point ions of mass m and charge e in a vessel 
of volume V. The numerical density is p = N/V.  These ions are classical and 
interact via Coulomb forces [potential vc(r)] and also via short-range two- 
body forces [-potential v,(r)]. The dimension of the space is v = 2 or 3. A 
uniform and rigid background ensures the electrical neutrality and the 
short-range force F, = -Vv, ( r )  is assumed to be covariant under rotations 
and integrable on R v. Then the Hamiltonian is 

O N =  + VN(r t ..... rn) (1) 
i=1 

1 
VN(rl,..., r . ) = ~  ~ v(ri, rj) 

tv~j 

where Pi and ri are the momentum and the position of the particle i, and 
the effective potential v ( r .  rj) is given by 

v(r,, rj) = v,(r i - rj) + v~(r i - rj) 

N p - 1  r o Iv dr [ v c ( r  - -  r , )  + v c ( r  - -  rj)] 

P~ f dr dr' vc(r - r') 
+ N ( N -  1) v 2 

f e2/lr[, v = 3 
v~(r) = [ - e  2 ln(lrl/a); v = 2 

(2) 

a is an arbitrary constant fixing the zero energy level. 

2 A. Alastuey simultaneously obtains this result in a different way and directly in the thermo- 
dynamic limit (to be published). 
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In a finite-volume canonical ensemble of temperature T = f i  
measured in energy units, the n-point correlation functions are defined by 

V p . ( r  1 ..... r . ) =  (r 1 ..... r . ) )  

/ } n ( r l , . . . ,  r n ) =  EC51(r1).."/91(rn)]SL, 
N 

/91(r) = ~ (~(r--ri) 
i = 1  

(3) 

where the symbol [ . . . ] sL means that the self terms are left out and the 
symbol ( . . .  } stands for the canonical average. From the definition (3) of 
the functions pV, the sum rules follow: 

f dr~+lp~+l (r  ~ r , + ~ ) = ( N - n )  ~ ..... p~(rl  ..... r~) 
V 

f v d r l  p~(r l )  = N 

(n~> 1) 

(4) 

These functions p,~ also satisfy the BBGKY hierarchy equations 

-- t iP,(  1,..., r ,)  Oiv(r i, rj) 
j = l , j g - i  

_fir dG+lOiv(ri, r.+1) v P n + l ( r l  ..... r n + t )  
v 

(5) 

By taking the gradient 0, - ~?/c3r, of v(r,, rj), (2), we are led to 

Oipff(rl ..... r . )  

n 

j=l, jr  

- f i  f v d r , + l  O , v , ( r , - r , + l )  ~ p , + l ( r l  ..... r ,+ l )  

- f l  drn+ ~ Oivc(r , -G+l){p2"+l(r~ ..... r ~ + t ) - p p n ( r  1 ..... rn) } (6) 
V 

The pressure P v, defined as -~?FN/O V, where F N is the free energy, is easily 
obtained by using a well-known scaling argument, 
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fl f drl dr:(r I -r2).Olv,(rl-r2)p~(rl ,  r2) f i p V = p _ _ ~  v2 

f drldr2(rl-r2) '631Vc(rl-r2) 2vV v= 

x {pV(rl, r2) - pp ~'(r 1) - pp V(r2) + p2 } (7) 

In the thermodynamic limit (TL), the n-point correlation functions will be 
denoted pn(rl,..., rn) (in a general way a quantity f v becomes f in the TL), 
and the associated truncated (Ursell) functions r p~(rl,..., r,) are assumed 
(i) to be invariant under space rotations and translations, (ii) to be sym- 
metrical in any permutation of the particles, and (iii) to tend to zero faster 
than some power of the distance when a particle is removed to infinity 
(clustering hypothesis); this point will be specified more fully in the 
following. In the TL the BBGKY hierarchy becomes (1) 

c3ip~(rl,...,r~) 

= -flp~(rl,...,r~) ~, {(~iVc(ri--rj)+~iVs(r,--rj)} 
j-- l,j~:i 

- - f l~  drn+l ~iVs(ri-rn+l)Pn+l(rl ..... r.+l) JR v 

--fl fR drn+lC?ivc(ri-rn+i){pn+~(r~,...,rn+l)-pp~(r~,...,rn)} (8) 

and the pressure (6) in this limit is 

f lP=P-2v  fR~ dr r.Vvs(r) p2(r)- ~v fRvdr r.Vvc(r) pr(r) (9) 

3. V O L U M E  D E R I V A T I V E  OF pV 

In this part we shall show that the derivative of p~ with respect to the 
volume V can be exactly and simply expressed with the help of 

v pm(m<.n+ 1) functions. This result is obtained by writing the volume 
derivative of pV, which follows from the definition of pV, and by using the 
hierarchy equations (5). We perform the derivative of pV, 

rn)=~vdr'l ... ~vdr'Ne ~Vu[~(rl) '' ' /3(rn) ]SL pV(r 1 Svdr'ljv~r dr' ~vN (10) 
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by using the well-known scaling for the integration variables rf = x i V1/V, 3 

0 v 
V ~ p n ( r  1 ..... r , )  

= _1_ i 0~. [r~pV(rl ..... rn) ] (A) 
V i _ l  

fl f dr=+ldr~+2rn+l.c~n+iv(r=+l,r, ,+,_) 
V 2 

X [ ( p 2 ( r n +  1, rn+2) pn(rl  ..... rn) > 

_ p V ( r n  + 1 rn+2  ) V _ , p , ( r l , . . . ,  r,)] (B) 

~-~P l d r n + l d r n + 2 r n + l " O n + l ~ ) c ( r n + l - - r n + 2  ) 
V OV2 

• [ ( ( p l ( r , + 2 ) - - P )  fin(rl ..... r=)) 

- - [ p V ( r ~ + 2 ) - - p ] p V ( r  I ..... r~)] ( r  (11) 

The transformation of (11) to (13) is given in Appendix A. Here we just 
sketch the calculation. The canonical average <.. .  } in terms (B) and (C) 
are expressed with the functions pV(m <~ n + 2). First v P~+2 is eliminated by 
using the hierarchy (5) and, once more with the help of the hierarchy (5) 
and of the sum rules (4), the total (A) + (B) is reduced to an integral on 
the boundary of the vessel S, 

= r[p=+l(r  1 rn, r ) _ p V  v ( A ) + ( B )  v ds. v , .... ~(r) p~(r~,...,r=)] (12) 

The term (C) does not make difficulties. Finally, the volume derivative of 
pv  is 

0@ l ~s . rp~+l(r ,  ..... r=lr) V p V ( q  ..... r . ) = v  ds vr 

+f lpp~(r t  ..... r~) v d r ( r . V )  ~PnV(r 1 ..... rnir ) (13) p. 

3 N is kept fixed here and p, which appears in V N in (2), is set equal to N/k2 
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VT i F where q5 ff and Pn+lt 1 . . . . .  r~ir) are defined by 

V ~ p V ~0 (rl,..., r .  I r) = dr' v c ( r -  r~ r ) D . ( r  I . . . . .  Ir') O 
V 

n 

D , ( r  1 ..... r , [ r ) =  ~ f i (r-r i ) -~ Pff+x(rl rn, r) 
, = ,  p~'(r, ..... r.) -p~l(r)  (14) 

P,+I~ 1 ..... r ,[r)  v = P n +  rn, - 

At this stage we make some comments on this result. Equation (13) is exact 
for a finite system in the sense that it follows directly and without any 
approximations from the definitions (3) of the p~. The term with ~ comes 
from the compression (or expansion) of the background during the varia- 
tion of V via the explicit dependence of the effective potential v(r~, r~) on V. 
Here ~ f  is the potential of the charge distribution which is situated near 
the points r 1 ..... r~ and such that the total charge is zero [from (4)], 

(, 

J drD~(r l  ..... r. l r )=0  (15) 
V 

Nevertheless, we point out that D, v is not the charge density around n fixed 
ions, because the background gives a contribution - p  instead of -pV(r ) .  
Here the presence of p {'(r) ensures that no contribution to q5 v comes from 
the neighborhood of the boundary where the two quantities are different. 
This point is important in the TL. 

Now we look at the more difficult question of the TL of Eq. (13). We 
shall not give a real proof of that TL. Information on such delicate 
problems may be found in ref. 14. We take the n points fixed in the bulk 
and indefinitely increase the volume V in such a way that the boundary 
moves away from the n points. The surface term in (13) vanishes in this 
limit because of the clustering assumption on the correlation functions [in 
fact, it is enough that T pn+l(rl  ..... rnlr) decreases faster than r-V]. The 
behavior of ~b v is linked to that of Pn+l'vr Ill This point and the perfect 
screening condition (PSC) which follow are considered in Appendix B. We 
assume that the clustering is enough to make qSn(rt,... , r n I r) decrease more 
than r-V, which is equivalent to saying that the lowest nonvanishing multi- 
pole moment of D,(r l  ..... r,  [ r) is at least of order 3. It follows that 

0 
c~p In p,(r  1 ,..., rn) 

vJRfl-( d r ( r .V )  JR~ dr' v c ( r - r ' ) D n ( r l  ..... r, lr') (16) 
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and we write 

~ ln p,(r I ..... rn) = - - lim dr' D~(r 1 ,..., r~ [r') 
R 0 ~ 

x j  dr(r . V) vc(r-  r') 
r~< R 0 

The last integral is easily calculated, 

(17) 

~ f  1 _~,n2 ,2, dr(r.V) vc ( r - r ' )=  - s e  t ~ o - r  ~V~ (18) 
r ~  R0 

V 3 = 4~/3, V2 = 

Taking into account the perfect screening condition 

fR D,(rl ..... r n l r ) = 0  
v 

(19) 

which is the TL of (15) or which follows from the clustering assumption for 
the p, ,  (B4), we get the final result 

~ l n p , ( r l  ..... r n ) = - f l e 2 v , '  I drr2Dn(rl, '",r,[r) (20) 
0p 2 .w 

This one is also easily written [-see (B4)] 

0 
= -  p , ( r ,  ,..., rn) 
ep 

- fie22 Vv fwdr  

x r2 __1 Z r2 {pn+,(r , , . . . , r , ,  r ) - p p , ( r ,  ..... r,)} 
h i =  1 

(21) 

Equation (20) or (21) does not depend on the origin of the coordinate 
system, because of (B4). 

Before we look at the consequences of this result, we recall that the rhs 
of (20) or (21) comes from the compression of the background during the 
variation of V. The question now is what happens in the limit of vanishing 
charges? Of course c~pn/c~ p is not zero for a non-Coulombic fluid. As in 
this case r r is zero in (13), the volume derivative of p,, is given by the first 
surface integral, which has to be nonzero. The answer to this problem is 
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that the clustering assumption is not valid for terms of order N l.(m) If we 
take into account this corrective term for non-Coulombic fluid, we do not 
obtain with (13) any new equation, but only the wall theorem u~ for the 
compressibility. So we have implicitly that the clustering properties are 
valid for the p, up to term N-~ in our case. 

A simple consequence of (21) is the second moment sum rule of 
Stillinger and Lovett (SL). Equation (21) for n = 1 leads to 

Be 2 ( .  

1 - V~ I dr r2pf(r) (22) 
2 JR 

which was first rigorously proved in ref. 4. 

4. C O M P R E S S I B I L I T Y  S U M  RULE 

We shall now prove the compressibility sum rule. The result follows 
from Eq. (20), from the PSC ( /=0 ,  1, and 2) for P2 and P3, and from 
the hierarchy (8) for n = 2 .  Of course, these three ingredients are not 
independent. From (9), we deduce the compressibility 

F 8p=(r) 
fi = 1 | dr(r. V) v~(r) 

~0 T -- ~ ")RV ~ T  

/~ fry &(r.V ) O2(r) 2v vc(r) -~p (23) 

The density derivative of P2 is given by (20), 

 e2V. 
8--tip pz(r)- 2 fR vdr' r'2{ps(r'r')+pz(r)S(r'-r)} (24) 

where we have introduced the function ps 3 

pS(r, r')=p3(r, r ')--pp2(r)=pf(r,  r ' )+ppf(r ' )+pp~(r ' - -r)  (25) 

with r and r', respectively, equal to r 2 - r  I and r 3 - r  1. Contrary to p3(r, r'), 
pS(r, r') is not invariant in the exchange of r and r'. By taking into account 
the second moment sum rule of SL, (22), and the PSC ( /=  0) for p2, we 
obtain the density derivative of p r  

8 p r ( r ) -  fle2Vvf dr 'r 'a{p•(r ,r ' )+pf(r)6(r ' -r)}  (26) 
8p 2 Rv 

This result was first shown for the one-component plasma (without vs) in 
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a much more complicated way which involves the four-point correlation 
function. 17)'4 Introducing the notation 

~ T E f ( r ,  r ' ) ]  ~- fR2~ dr dr' f(r, r '){pf (r, r') + pf(r) 6(r' - r)} 

L V[f(r, r')] = fRe,' dr dr' f(r, r') p;(r, r') 

~r r')] = fR2, dr dr' f(r, r'){pS(r, r') + p2(r) 6 ( r ' -  r)} 

(27) 

LS[f(r, r')] = IR2, ' dr dr' f(r, r') pS(r, r') 

we write the compressibility in the form 

fl  O P  . fl2ee Vv •p T= 1 + ~ [~S[r  .Vvs(r)r  '2] + L,~r[r .Vvc(r)r '2]]  (28) 

Now, by using the symmetry of P3 and the PSC (l= 0, 1, and 2) for P3, we 
shall transform (28) into a three-point integral which can be reduced to a 
two-point integral with the help of the hierarchy, p~" and pS are invariant 
under the transformations r ~ - r  and r'--+r'-r. It follows, for any 
function f(]rl) such that the integrals converge, that 

L T ' S [ ~ ( r ' 2 - - r . r ' ) ( r 2 - -  2r.r ' )]=O (29) 

We introduce unit vectors ?, f' and express (i.  7) 2 in terms of the functions 
g,(P-Y) which occur in the PSC (B5), 

1 ( i .? , )2_v--  1 g 2 ( i i ' ) + - g o ( ? 7 ) ,  (?.?')=gl(i .P') (30) 
V Y 

Then, by using the PSC (/= l, 2) for pr3 and ps, we are led to 

2v I r ' 3 g l ( i . f , ) l  ~Ct ~T's ff(Irl)r '2] = v - ~  T's f(lr[) 7 

4 The sign before v2(x ) in Eq. (48) of ref. 7 has to be read minus. 

(31) 



1178 Vieillefosse and Brajon 

The compressibility, given by (28), becomes 

T p2e2V~ fl 63P = 1 q- ~ [~(~s[-?.Vt, s(r ) r,3gl(t:, t:')] 

+ sT[? " Vvc(r) r' 3g l(t;. t:')] ] (32) 

By integrating the hierarchy equation (8) for n = 2  with some function 
g({r]), it is easily shown that 

SsEP.gv,(r) g(Ir'l) g l ( f " / ' ) ]  +2~r[i'VG(r) g(Ir'l) gl(F-F')] 

l fR drp;(r)r_v+l d {rv_lg(irl)}+p2f R drr u+, fl ~, dr ,. 
d x ~  {rV-~g(lrl)} qSl(0l r) (33) 

where q~l satisfies 

Ot(Olr)=f Rvdr' G(r-r'){6(r')+p ~O2r(r')} 

=p--t f dr,{G(r_r,)_v~.(r) } pr(r, ) (34) 
J R  v 

For g(Irl)=r 3, this relation allows us to express the compressibility (32) 
only in terms of two-point integrals 

flOP fl2e2V~, E1;R fa ] (~p T = I + T  ~ ,.drrZp[(r)+p 2 ,drr2cl)~(Olr) (35) 

Finally, taking account of the SL sum rule (22), we are led to 

fl_~pOP T f12e22 V~, p2 fRv dr r2~Ol(O ] r) 

V2p V fR dr r4p[(r) (36) 
= ~ v + 2  

which implies that ~b,(Olr) and p[(r) are, respectively, more decreasing 
t h a n r  ~ + 2 } a n d r  ~+4) 
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5. C O N C L U S I O N  

The volume derivatives of the functions p~ appear very useful in 
Coulombic fluids, unlike in neutral fluids. It has been admitted that 
the clustering properties were valid for the Pn up to the term N 1. This 
point remains open and is linked to the fact that the long-range nature 
of the Coulomb potential imposes local neutrality (PSC), which makes 
the system incompressible. Is) The compressibility (36) is not related to the 
density fluctuation, but to the variation of the free energy when the whole 
system (with its background) is compressed. 

A P P E N D I X  A 

Here we give some details on the transformation of Eq. (11) to (13). 
First we write (B) with the help of the function p,~ (rn ~< n + 2) by using 

fi=(r.+ l, r.+ 2) fi~(r ,,..., rn) 

=/5~+2(rl ..... r,,+2)+ ~ (~(ri--r,,+2)l},,+l(rl ..... r ...... r~,r,,+l) 
i = 1  

+ ~ 6(r,--r~+l)lS~+a(rl,...,ri,...,r~,r~+2) 

+ ~ (~(r,--r~+a)c~(rj--r~+2)~(rl,...,ri ..... ry,...,r~) 
i r  [ 1,...,n] 

It follows that 

!; ( B ) = - -  dr~+ldrn+2r~+l.cl,,+lv(r~+t,r~+2) 
V 2 

• P~;+2(rl ..... r~ 

11 

fl ~ f dr,,+lr,,+l"~,,+lv(r,+~ 'r~) 
V 1 V i =  

[,, 
x p .+ 1(rl ..... ri,---, rn+ l) 

Y', f dr.+lri  3iv(r, ,r.+,) 
V i =  1 V 

• p,~+ 1 ( r l  ..... r . . . . .  , r . +  1) 

~2 l # y e  [1,. . . .n] 

x p , , ( r ~  ..... r~ ..... r j  ..... r . )  

(Bfi) 

(Bc~) 
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@7 ~ fV V2 drn+l drn+-~rn+llOn+l~)(rn+l'rn+2)-v } (B~) 

x P2(r .+  1 rn+2) r.)  , p~(rl , . . . ,  

(B~) is written in the form 

(B~)= dr~+lrn+ l r lv(rn+ 1 r i  ) V ---- . , Pn+l(rl ..... rn+l)  
v i 1 

, Pn+2(rl ..... rn+2) 
v 

The term in brackets is the rhs of the hierarchy (5) for 
(r~ ..... ~+~). 

Thus we are led for (Be) to 

(B~)=lf- drn+lr~+, .an+lp~+l ( r l , . . . , r , ,+ l )  
V V 

~n + V lPn+l- 

In the same way 

(B/~)= - 7  2 r,. 0,v(r,, rj)p~(rl ..... rn) 
i= I t_j= 1 

j~-i 

+fvdrn+l ~iv(ri'rn+l)P2+l(rl ..... r n+ l ) ]  

is transformed to 

(Bfl) = 1 k v -- ri" ~iPn (rl ..... rn) Y. t=l 
g 

by using the hierarchy (5) for Oipn(rl,.. . ,  rn) and (BT) is equal to 

l p ~ ( r  1 ..... r~)f drn+,rn+ , ~n+lp~(rn+l) (B~) = v v 

with the help of the hierarchy (5) for 0n+ lp~(rn+l).  
The total (B) is obtained 

--1Jr' drn+irn+l . On+1{pVn+l(r,,...,rn+,)_pV(rn+l) Pn(r ..... rn)} ( B )  = ~, ~' 

+ - ri" ~?iPn (rl ..... rn) 
1=1 

and for (A) + (B) we get 
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r-c3{pn + l(rl . . . . .  r~, r) ( A ) + ( B ) = - n p ~ ( r l , . . . , r , ) + -  j dr v 
Y V 

- p (r) . . . . .  r o ) }  

1-  
=v~sdS' 'YtLP~+l(rl  ~ ..... rn ' r ) - -P~(r )P f f ( r l  ..... r,,)} 

--nP2(rl" '" ,r , )  I dr {p~V+l(r I ..... r , , r )  v v - -  - -  lO 1 (r) p~ (rl,... , r~)} 

which gives (12) by taking into account the sum rules (4) for the pV. 

A P P E N D I X  B 

Here we recall the link between the asymptotic behavior of the 
functions Or and ~,, and we give the perfect screening conditions (PSC) 
which are needed in Sections 3 and 4. From the hierarchy equation (6), it 

VT ( t. is easily shown that the function Pn+ it 1 ..... rni r), (14), satisfies 

VT 
V P n +  l ( r  1 ..... rnlr) 

= - f l  f~. dr' Vvs(r - r') 

I V x pn+2(rl,..., rn, r, r ')--p~'(r, r ' )p2(r  ~ ..... rn) 

+pff+l(r l  ..... rn, r ) ~ g)(r'--r,)] 
i = l  

- - f i r  d r ' V v c ( r - r ' )  
V 

I VT b'T • p~+2(rl, . . . ,r~lr, r ' ) + p , + l ( r  1 ..... r~lr) 

}] x 6 ( r ' - - r i ) + p V ( r ' ) - - p  
1 1 

-- flpV(r) p,V(rl ..... rn) V~(r~, . . . ,  r,  Jr) (B1) 

where the truncated function 

vr "r [r, r') P n + 2 ~  1~'", Fn 

V 2(rl~. . .  ' r ,  r '  =On+ rn, ) - -pV(r)  ~" p,+ l(rl ..... r , ,  r') 

- -  DV(F ' )  p f f +  I(FI ,..., r , ,  r) 

- -p~ ' ( r , r ' )pV(r l , . . . , r~)+2pV(r ' )pV(r )p f f ( r l  ..... r~) (B2) 

822/55/5-6-21 
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will, in the TL, exhibit clustering properties for the two variables r and r'. 
We shall not go into details of the TL of (B1). ~ We just mention that the 
clustering property for ~n(rl ..... rn I r) follows from the clustering properties 
o f  T T p~+l(rl  .... , rnlr) and p~+~(rL,...,r~]_ r, r') and from the short-range 
behavior of v~. We shall assume that the clustering of these functions and 
v~ are such that 

lira rVqS,(rl,..., rn [r) = 0 (B3) 
Irl ~ zc 

rl,..., rn fixed and finite. 
It follows from the definition of ~ , ,  (14), that 

where 

f dr' r'Zgl(? . P') Dn(rl ..... rn I r') = 0, l = O, 1, 2 (B4) 

pS is defined by (25). 

g,(p.p')=P,(;.;') (~,= 3) 

= cos(l~b) (v = 2) (B5) 

cos ~ = (~. r:') 

The P~ are the Legendre polynomials. We deduce from (B4) the following 
PSC: 

l = 0 :  f dr' p~(r')= -p  

f dr' pr(r, r ' ) =  --2pr(r)  

f dr' pS3(r, r') = --2p2(r ) 

l = 1 :  f dr'r' gl(~.i')p~(r,r')= -rp5(r) (B6) 

I dr' r'gl(f. ?') pS(r, r') = -rp2(r) 

l = 2 :  f dr' r'2g2(f.i')p~(r,r') = -r2p5(r) 

f dr' r'2g2(f .f') pS(r, r')= -r2p2(r) 
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